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1. Introduction

Electric-magnetic duality was originally established as a symmetry of the Maxwell equa-

tions and revealed itself a powerful tool. As examples let us remind Dirac’s realization [1]

that the very existence of magnetic monopoles would imply the quantization of charges, or

Montonen and Olive [2] who conjectured the presence of this symmetry inside non-abelian

gauge theories which was later shown to hold as a strong-weak duality in N = 4 super

Yang-Mills [3].

Although Einstein’s equations of General Relativity and the concept of electric-

magnetic duality were already well-established, it was only in the 50s-60s that Taub [4]

and Newman-Unti-Tamburino [5] discovered a solution, called the Taub-NUT solution,

which possesses a mass but also another parameter called the NUT charge. It was soon

realized [6] that this NUT charge could be understood as the gravitational magnetic dual

of the ADM mass (see for example [7] and references therein). However, up to now, this

duality, which acts as an Hodge operator on the Riemann tensor, has only been verified in

linearized gravity and still resists attempts to be proven in the full non-linear theory [8, 9].

Motivated by the understanding of this important duality that seems to exist in General

Relativity and the already-known BPS bound M2 +N2 = Z2 [10], we were first interested

in the supersymmetric properties of the charged Taub-NUT. We reviewed in our previous

paper [11] how to obtain this BPS bound in N = 2 supergravity, and derived the Killing

spinors for this particular solution. We then showed the impossibility of including the NUT

charge in the usual supersymmetry algebra and proposed a way of modifying the algebra

such as to include it. This discussion was motivated by the projection we obtained on the

Killing spinors and from Nester’s construction. On the way, we also derived generalized

expressions for the ADM and dual ADM 4-momenta. This construction made it clear that

the vielbein formalism is certainly more appropriate to study the duality as it permits

to express surface integrals in terms of regular spin connections (along the Misner string
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direction). It was also noted that this completion of the N = 2 supersymmetry algebra

should already be present in N = 1.

In this work we would like to give credit to the modification of the N = 2 supersym-

metry algebra presented in [11]. We provide evidence that the modification should also be

present in N = 1 and verify that it is indeed proportional to a 4-vector Kµ, where K0 = N

for the Taub-NUT solution. In this letter, we thus consider the Taub-NUT solution with

the ADM mass set to zero and with no electromagnetic charges. We shall refer to this solu-

tion as the “pure Taub-NUT”. It is understood that this metric is solution of the vacuum

Einstein equations and that it preserves no supersymmetries in N = 1 supergravity as the

BPS bound is N = 0.

The paper is organized as follows: In section 2, we apply our charge formulæ [11] to the

boosted pure Taub-NUT and show that Kµ does transform as Pµ under boosts. In section

3, we study the limit of infinite boost using the method of Aichelburg-Sexl and show that we

obtain a shock pp-wave. As expected from the result in [7] where it is checked that linearized

pure Taub-NUT is dual to linearized Schwarzschild, we also recover the infinitely boosted

Taub-NUT metric as the gravitational dual of the Aichelburg-Sexl pp-wave, or infinitely

boosted Schwarzschild [12]. In section 4, we review the supersymmetric properties of pp-

waves and show that the dual pp-wave preserves half of the supersymmetries and satisfies

the BPS bound K0 = −K3. This is also checked calculating the charges of the dual

pp-wave.

2. The boosted Taub-NUT solution

In this section, we wish to add credit to the existence of the 4-vector Kµ. This 4-vector

was already presented in the derivation of the quantization condition in gravity in [7]. We

also showed in [11] that the Nester construction or a formal definition of a gravitational

dual analogue of the energy-momentum Pµ gives a unique expression for the 4-vector Kµ.

The charge formulæ were however only applied to the static Taub-NUT. To show that this

Kµ does transform as a 4-vector, we will boost the Taub-NUT solution and show that a

momentum contribution appears in the boosted direction.

To do that, let us first recall the metric of the Taub-NUT solution which possesses a

mass M and a NUT charge N :

ds2 = − λ

R2
(dt+ 2N cos θdφ)2 +

R2

λ
dr2 +R2(dθ2 + sin2 θdφ2) (2.1)

where we defined λ = r2 −N2 − 2Mr and R2 = r2 +N2. From now on, we will set M = 0

and discuss the pure Taub-NUT solution.

As we showed in [11], if we work in the vielbein formalism it is possible to derive an

expression for Pµ and Kµ as surface integrals over the spin connection. The linearized

vielbein is given by:

eµ = dxµ +
1

2
ηµν(hνρ + vνρ)dx

ρ (2.2)

where hνρ = hρν is the linearized metric, vνρ = −vρν is related to local Lorentz invariance

and no difference is made between flat and curved indices as we are working in linearized
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gravity around cartesian flat coordinates. The expressions for the charges in terms of the

vielbein were found to be [11]:

P0 =
1

16π

∮

(∂ihli − ∂lhii + ∂ivil)dΣ̂l, (2.3)

Pk =
1

16π

∮

(∂0hlk − ∂lh0k + δk
l ∂ih0i − δk

l ∂0hii + ∂kv0l + δk
l ∂ivi0)dΣ̂l, (2.4)

K0 =
1

16π

∮

ǫlij(∂ih0j + ∂jvi0)dΣ̂l, (2.5)

Kk =
1

16π

∮

ǫlij(∂ihkj + ∂jvik)dΣ̂l, (2.6)

where ǫ123 = 1. The only restriction for using these expressions is that the spin connection,

using a particular linearized vielbein, has to be regular. For the Taub-NUT metric we

obtained K0 = N , P0 = M and Pi = Ki = 0 using a triangular vielbein.

One could easily argue that there always exists a gauge transformation such that the

vielbein can be set in a symmetric gauge (and by this we mean vµν = 0) which would

reduce our formulæ for Pµ to the standard ADM ones. However, one should be aware that

this is only valid (at the level of the calculation of charges) in the case where the gauge

transformation is non-singular. In other words, one can use these formulæ in the symmetric

gauge where vµν = 0 only if the spin connection is regular along the Misner string direction.

As stated in [11] we see that these expressions are generalized by saying that we should not

fix the gauge in the symmetric gauge but rather in the “regular spin-connection” gauge.

A first natural test to certify the existence of the 4-vector Kµ is to show that the

boosted Taub-NUT has K0 = γN and a momentum in the direction of the boost equal

to γβN . As we are interested in calculating a surface integral at spatial infinity, we will

directly work with the linearized pure Taub-NUT:

ds2Lin = −dt̄2 − 4N cos θ̄dφ̄dt̄+ dr̄2 + r̄2(dθ̄2 + sin2 θ̄dφ̄2) (2.7)

which can be written in cartesian coordinates as:

ds2Lin = −dt̄2 − 4N
z̄

r̄

1

ρ2
(x̄dȳ − ȳdx̄)dt̄+ dx̄2 + dȳ2 + dz̄2 (2.8)

where ρ2 = x̄2 + ȳ2.

If we now perform a boost in the z-direction:

t̄ = γ(t− βz) z̄ = γ(z − βt)

x̄ = x ȳ = y (2.9)

we get:

ds2 = −dt2 + dx2 + dy2 + dz2 − 4N
γ2(z − βt)

r̄ρ2
(dt− βdz)(xdy − ydx) (2.10)
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One should be careful while treating the coordinate r̄, as the large radius limit is really

r ≡ (x2 + y2 + z2)1/2 → ∞, and thus:

1

r̄
≡

[

x2 + y2 + γ2(z − β t)2
]−1/2

=
1

r

[

(sin2 θ + γ2 cos2 θ) + γ2β2(t2/r2) − 2γ2β cos θ(t/r)

]−1/2

∼ 1

rB
+O(1/r2) (2.11)

where we defined B =
√

sin2θ + γ2cos2θ.

Our choice for the vielbein is:

e0 = dt − 2N
γ2(z − βt)

r̄ρ2
(ydx− xdy)

e1 = dx

e2 = dy

e3 = −2N
γ2β(z − βt)

r̄ρ2
(y dx− x dy) + dz (2.12)

where it can be checked that the spin connection is regular, in agreement with [11] because

our choice is precisely the triangular vielbein em̄µ̄ for the linearized static Taub-NUT metric

transformed under the boost to emµ = Λm
n̄ Λ ν̄

µ en̄ν̄ = δm
µ + 1

2η
mν(hνµ + vνµ).

Looking at (2.10), the linear perturbations are:

hxz = −βhtx = −2Nγ2β
(z − βt)

r̄

y

x2 + y2

hyz = −βhty = 2Nγ2β
(z − βt)

r̄

x

x2 + y2
(2.13)

And we can directly see in (2.12) that our vielbein gives us vta = hta and vza = hza for

a = x, y.

We can now easily proceed to the calculation of K0:

K0 =
1

16π

∮

ǫlij(∂ih0j + ∂jvi0)dΣ̂l =
1

8π

∮

ǫlij∂ih0jdΣ̂l

=
N

4π
γ2

∮

S

sin θ

B3
dθdφ

= γN. (2.14)

Note also that the time dependence in the integrand (2.14) is subleading and tends to zero

when r → ∞.

The calculation for Kz is readily the same and we find:

Kz = − β

8π

∮

ǫlij∂ih0jdΣ̂l = −βK0 = −γβN (2.15)
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while Kx = Ky = 0. Finally using (2.3) and (2.4), it is not difficult to show that Pµ = 0

for the boosted Taub-NUT solution.1

We have thus shown that Kµ behaves as a 4-vector.

3. The pp-wave and its magnetic dual

In this section, we present two ways of obtaining the infinite boost of the Taub-NUT

metric. The first derivation follows the steps of the method of Aichelburg and Sexl [12]

who performed the infinite boost of the Schwarzschild metric. They obtained a (shock)

pp-wave given by the expression:

ds2 = −dt2 + dx2 + dy2 + dz2 − 8 p ln(
√

x2 + y2) δ(t− z) (dt − dz)2 (3.1)

This method was generalized in [13] and used, for example, for the infinite boost of the

Reissner-Nordström black hole. This more general analysis was used in [14] for the infinite

boost of the Kerr black holes where the Aichelburg-Sexl metric is shown to be recovered

in a certain limit.

One important characteristic of (3.1) is that this metric is solution of the linearized but

also of the full Einstein’s equations. In fact, this kind of solutions was already well-known.

The Aichelburg-Sexl metric belongs to the wider class of pp-waves, plane fronted waves with

parallel rays, first introduced by Brinkmann in 1925 as metrics on Lorentzian manifolds:

ds2 = H(u, x, y)du2 − du dv + dx2 + dy2 (3.2)

where H is a smooth function. If moreover the function H is harmonic in x and y then it

is a solution of the full Einstein’s equations.

The specificity of the Aichelburg-Sexl solution is that the H function factorizes its u

dependence in a delta function such thatH(u, x, y) = F (x, y)δ(u) and F (x, y) is a harmonic

function. This shock pp-wave was also discussed in [15] and understood as the gravitational

radiation of a particle travelling at the velocity of light measured by an observer at rest.

We now perform the infinite boost on the Taub-NUT solution. Like in the

Schwarzschild case [12], we only need the linearized part of the metric. For the pure

Taub-NUT we thus have:

ds2 = −dt̄2 + dx̄2 + dȳ2 + dz̄2 + ds2def (3.3)

where ds2def = −4N cos θ̄dt̄ dφ̄.

Here, for convenience, we will take the Misner string along the x direction (namely

interchanging x̄ and z̄ in (2.8)) and boost along the z direction according to (2.9). We then

1For P0 and Pz the integrands are zero while for Px and Py the integrands are non vanishing but the

integrals (2.4) are zero.
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find in the leading order in γ:

t̄ → γ u

z̄ → −γ u
r̄2 → γ2 u2 + (x2 + y2)

cos θ̄ =
x̄

r̄
→ x/

√

γ2 u2 + (x2 + y2)

dφ̄ → 1

γ

ydu

u2 + γ−2y2
(3.4)

where tan φ̄ = ȳ/z̄, we defined u = t − βz, and by leading order we mean that z̄ →
γ(z − βt) = −γu + γ(1 − β)(z + t) ∼ −γu. Note that we can also drop in dφ̄ the second

term in u dy as we will see that it is at u = 0, when the infinite boost limit is considered,

that a contribution appears.

The deformed part of the metric becomes:

ds2def = −4N
x

√

γ2 u2 + (x2 + y2)
γdu

1

γ

ydu

u2 + γ−2y2
(3.5)

In the limit of infinite boost, we take γ → ∞ and N → 0 while keeping Nγ = k. This

means we have:

ds2def = −8k lim
ǫ→0

1

ǫ

Adu2

2
√

(u/ǫ)2 + (1 +A2)((u/ǫ)2 +A2)
(3.6)

where we wrote ǫ = γ−1x and A = y/x.

If we now take ǫ→ 0 in the sense of the distributions using the fact that:

lim
ǫ→0

1

ǫ
f(z/ǫ) = δ(z) (3.7)

for a function f such that
∫ +∞

−∞
f(z)dz = 1, we find:

ds2def = −8k arctan(1/A) δ(u) du2 = −8k arctan(x/y) δ(u) du2 (3.8)

and the metric of the infinitely boosted pure Taub-NUT metric is:

ds2 = −dt2 + dx2 + dy2 + dz2 − 8k arctan(x/y) δ(t− z) (dt − dz)2 (3.9)

The metric (3.9) is obviously solution of the full non-linear Einstein equations because it

is of the form (3.2) and arctan(x/y) is harmonic. Moreover, we show in the next section

that K0 = −Kz = k as it should.

To confirm this limit we now describe an alternative derivation using the gravitational

duality of (linearized) gravity [7]. We show that the infinite boost of the Taub-NUT metric

is the gravitational dual of the Aichelburg-Sexl pp-wave. In fact it is enough to check that

one metric has a Riemann tensor dual to the other. For simplicity, we will not take into

account the Dirac delta function as it does not affect the following analysis.

– 6 –



J
H
E
P
0
1
(
2
0
0
9
)
0
4
5

The non-trivial fluctuations for the Aichelburg-Sexl pp-wave are:

htt = hzz = −htz = −8 p ln(
√

x2 + y2) (3.10)

The linearized Riemann tensor is defined as:

Rαβγδ = 2∂[αhβ][γ,δ] (3.11)

whose non-trivial components for the Aichelburg-Sexl metric are:

Rtatb = −1

2
∂a∂bhtt Rtazb = −1

2
∂a∂bhtz Rzazb = −1

2
∂a∂bhzz (3.12)

for a, b = x, y and where Rαβγδ is, as usual, antisymmetric in its first two and last two

indices and symmetric under the exchange of the first and second pair of indices.

The infinitely boosted pure Taub-NUT has non-trivial fluctuations:

h̃tt = h̃zz = −h̃tz = −8 k arctan(x/y) (3.13)

where h̃µν refers to the dual metric. The non-trivial components of the Riemann tensor

are thus the same as in (3.12) but with hµν replaced by h̃µν .

It is then easy to check that the non-trivial components of the Riemann tensor for (3.9)

are precisely the ones obtained from (3.12) by duality using:

R̃αβλµ =
1

2
ǫαβγδ R

γδ
λµ (3.14)

with ǫtxyz = 1.

We have thus checked that the dual of the Aichelburg-Sexl pp-wave is the infinitely

boosted Taub-NUT, which we will call the dual pp-wave or NUT-wave. The metric is

another shock pp-wave but with a different harmonic function:

ds2 = −dt2 + dx2 + dy2 + dz2 − 8 k arctan(x/y) (dt − dz)2 (3.15)

Note that the harmonic function has a cut in the x− y plane, remnant of the Misner

string singularity. It is interesting to recall [11] that in the Killing spinor equation for

Taub-NUT, the ADM mass and NUT charge appear in the combination M − γ5N where

γ2
5 = −1, which is reminiscent of a complex structure. In the same way, for the pp-waves,

we could construct a complex variable ζ = y + ix whose logarithm is ln ζ = ln
√

x2 + y2 +

i arctan(x/y) and attribute the real part of this logarithm to the Aichelburg-Sexl metric

and the imaginary part to the dual pp-wave. This last fact can be generalized to any

solution (3.2), where H(u, x, y) = F (x, y)δ(u) and F (x, y) is a harmonic function. The

gravitational dual solution is characterized by H(u, x, y) = F̃ (x, y)δ(u) where F̃ is the

harmonic conjugate function of F (namely F(ζ) = F+iF̃ is an holomorphic function of ζ).2

2The holomorphic nature of F(ζ) is reminiscent of the holomorphic nature of the complex Ernst potential

for BPS solutions (see for instance section 3.4 of [16]).
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4. Charges and supersymmetric properties of the dual pp-wave

In this section, we want to review the fact that the shock pp-wave is a supersymmetric

solution of N = 1 supergravity3 and, as the BPS bound is P0 = −P3 for the Aichelburg-

Sexl metric, we want to establish that the BPS bound is K0 = −K3 for our dual pp-wave.

As a final check, we show that the charges for the dual pp-wave verify this BPS bound as

it can be expected from the infinite boost of (2.14) and (2.15).

To use our formulae for the charges, we need a regular spin connection [11]. We will

give arguments that the good choice of vielbein is the symmetric one. To do that, let us

start with a pp-wave of the form:

ds2 = −dt2 + dx2 + dy2 + dz2 + F (dt − dz)2

= −du(dv − Fdu) + dx2 + dy2 (4.1)

where F = F (x, y) and where we defined light-cone coordinates u = t− z and v = t + z.

Note that we dropped again the delta function for simplicity.

An obvious vielbein choice in light-cone coordinates is:

e− = du e+ = dv − Fdu

e1 = dx e2 = dy (4.2)

and the metric is ds2 = ηabe
a eb where the non-vanishing components are η11 = η22 = 1,

η+− = η−+ = −1/2.

Going back to cartesian coordinates, we obtain the symmetric vielbein:

e0 =
1

2
(e+ + e−) = dt− F

2
(dt − dz)

e1 = dx

e2 = dy

e3 =
1

2
(e+ − e−) = dz − F

2
(dt − dz) (4.3)

where symmetricity is understood by the fact that vµν = −vνµ = 0. The non-trivial

components of the spin connection are:

ω0a = −ω3a =
1

2
∂aF (x, y)(dt − dz) (4.4)

where F (x, y) = −8k arctan(x/y) for the dual pp-wave. Even if in the case of our dual pp-

wave the metric has a string singularity, one can see that the spin connection is “regular”

in the x − y plane . One could argue that a triangular vielbein with a regular linearized

spin connection could also be used. However, it is important to note that our choice of

vielbein is linear in the full theory. If one tries to construct such a triangular vielbein for

example it would not be linear in the full theory and the operation of linearizing would

then erase singularities in the spin connection such as 1/
√

1 − F ∼ 1+(1/2)F with F being

the singular harmonic function. The calculation of charges would then fail.

3Note that all supersymmetric solutions of N = 1 supergravity were classified in [17].
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It can be easily seen that the pp-wave solution is a half-BPS solution of N = 1

supergravity when looking at the Killing spinor equation (conventions are taken from [11]):

δψµ =

[

∂µ +
1

4
ωmn

µ γmn

]

ǫ = 0 (4.5)

This gives us the set of equations:

δψt =

[

∂t −
1

4
∂aF (x, y)(γ0 + γ3)γa

]

ǫ = 0

δψx = ∂xǫ = 0

δψy = ∂yǫ = 0

δψz =

[

∂z +
1

4
∂aF (x, y)(γ0 + γ3)γa

]

ǫ = 0 (4.6)

As the second and third equations show that ǫ does not depend on x and y, then the first

and fourth equations imply the projection (γ0+γ3)ǫ = 0. This determines that the solution

preserves half of the supersymmetries and has a constant Killing spinor. This projection

corresponds to the BPS bound K0 = −K3 for our dual pp-wave.

As a final check, we calculate the charges for the dual pp-wave. For the Aichelburg-Sexl

pp-wave, this was done in [18]. Here, in the symmetric vielbein, we have vµν = 0 such that:

K0 =
1

16π

∮

ǫlij∂ih0jdΣ̂l = − k

2π

∮

1

r
δ(t− z) dΣ̂r

= k

∮

r sin θ δ(t− r cos θ) dθ = k

∮

δ(t− r cos θ) d(r cos θ)

= k (4.7)

Again the calculation for Kz is readily the same and gives −k. There is no contribution

to Pµ.

5. Conclusions

In this letter, we have provided some more arguments to the fact that General Relativity,

at least at the linear level, should include a 4-vector Kµ dual to the usual one Pµ.

Moreover, we showed that the infinite boost of Taub-NUT is a shock pp-wave and thus

also a half-supersymmetric solution of N = 1 supergravity. This provides more evidence

that the NUT charge should be included in the N = 1 supersymmetry algebra such as

conjectured in [11]:

{Q,Q′} = γµCPµ + γ5γ
µCKµ (5.1)

where Q′ is related to Q by a phase Q′ = Q eαγ5 with tanα = K0/P0. Indeed, the

“modified” superalgebra (5.1) is consistent with the projection and the BPS bound derived

in the previous section.

As a final word it would be interesting to see if the construction of more general dual

supersymmetric solutions with NUT charge also provides modifications in their correspond-

ing supersymmetric algebras such as in the super-AdS algebra. It would also be interesting

to study further the appearance of the Lorentzian Taub-NUT charges in higher dimensional

supersymmetry algebras such as the one characterizing M-theory [19].
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